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We juxtapose (quantum theorem) proving versus quantum (theorem proving). 
The logical content of verification of statements concerning quantum systems is 
outlined. The Zittereingang (trembling input) principle is introduced to enhance 
the resolution of the predicate satisfiability problem provided the processor is 
in a position to perform operations with continuous input. A realization of a 
Zittereingang machine by a quantum system is suggested. 

I N T R O D U C T I O N  

What is a useful way to broaden the facilities of processors in order to 
have progress in solving NP-hard problems? The principle of trembling input 
I put forth in this paper will require flexibility in a processor. That means 
that it will be assumed that the processor is able to deal with "intermediate 
outputs," or, in other words, that it will be possible to pass continuously from 
one input to another. I shall also assume that all possible inputs form a 
linear space, and that the result depends continuously on input-preserving 
linear combinations. 

To elucidate the principle, I consider the SAT problem. Suppose that, 
in solving some problem, one has reduced it to the following one: given a 
propositional form P(xl  . . . . .  x,0 of, say, n = 100 variables, one has to check 
whether there exists an n-tuple (Q . . . . .  c~) such that P(cl  . . . . .  c~) = true. 

So, if there is no heuristical method to prove the theorem 

3xl . . . . .  3xn P(xl  . . . . .  x,~) 

there remains only the (classical) way of solution, namely to choose at random 
the values of the input n-tuples, input them into the machine calculating the 
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form P, and wait until true appears on the output. Or, if one has 2 n such 
machines, do it simultaneously. When n is large enough, both possibilities 
are unrealistic, and one has to confirm that there are no classical means to 
prove this theorem. 

The Zittereingang principle which I am going to put forward could 
provide the nonconstructive solution of the problem. Its basic idea is the 
following. Instead of preparing and repreparing the input register at different 
input states in order to search for P = true, we make the input state tremble. 
Then, instead of checking the output value, we measure the derivative of the 
output. If  the value of P is always No, the output will not tremble, and one 
will have the zero value of the derivative. When there is Yes among the 
output values, the derivative will be nonzero. So, checking the value of the 
derivative, one can prove or reject the theorem. 

To realize this project, I call on quantum effects. 

1. P O L A R I Z E D  E L E C T R O N S  

The potential reader of  this paper is assumed to be far away from 
quantum mechanics, so a brief outline of the simplest physical experiment 
where quantum effects arise seems appropriate. This will be the famous 
Stern-Gerlach experiment with polarized electrons. The equipment needed 
for this experiment is depicted in Fig. l. 

There will be two possible orientations of the polarizer (w.r.t. the frame 
at the left margin of Fig. 1) and two possible positions for the detector within 
this scheme. So we shall be able to prepare four sorts of  beams: 

1. The polarizer P is x-oriented, and the upper beam is chosen. 
2. The polarizer P is z-oriented, and the right beam is chosen. 
3. The polarizer P is x-oriented, and the lower beam is chosen. 
4. The polarizer P is z-oriented, and the left beam is chosen. 

X 

Source 

P 

I 
l =lr-'ff] 

I 
Fig. 1. The Stern-Gerlach experiment. The source (cathode) S emits a beam of electrons. The 
polarizer P splits the initial beam into two. The detector D counts the number of absorbed 
electrons: whenever an electron is absorbed, the detector clicks. 
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Fig. 2. Reminder on state notation: the dot 
denotes the trace of the appropriate beam in 
the (xz) plane. 

4 2 

From now one can consider the new source of electrons prepared in a 
definite state (Fig. 3). 

The discovery of Stern and Gerlach was the following. Suppose that 
the initial beam is prepared in the state 1. Then making it pass through the 
x-polarizer, one can see that the beam will no longer split and all electrons 
will go up. That means that whenever an electron is emitted in the state 1 
and passes through the filter checking "Is the state 1?" the answer will be 
Yes with certainty, whereas if the same beam passes through the z-polarizer, 
it will split into two. Thus, provided the electron is emitted in state 1, the 
probability to detect it in state 2 is 1/2, and the same for the state 4 (see Fig. 
2). These results can be summarized as follows. 

Denote by P(i, k) the probability for the electron to be detected in the 
state k provided it was emitted in the state i. Then 

{~ ' i = k  
P(i ,k)  = , i - k =  1 (rood2)  

otherwise 
(l.1) 

The striking property of quantum mechanics is that the result (1.1) is all that 
we can observe by means of this equipment. It is in principle impossible to 
measure a pair of properties, say 1 and 2, simultaneously. Such a series of 
experiments resulted in Bohr 's  complementarity principle: there are physical 
properties which cannot be measured simultaneously. Given two such proper- 
ties d and ~ ,  the measurement of  a~ unavoidably affects the result of 

so ce I1 

Fig. 3. The source of electrons prepared in a definite state. 



1816 Zapatrin 

measurement of  ~ .  This principle is a fundamental law of the nature: we 
can like it or not, but no violation has been found. 

2. A QUERY MODEL: (QUANTUM THEOREM) PROVING 

In this section I am going to tackle the problem of determining the 
initial state of quantum objects. To make the conclusions more transparent, 
a more complicated quantum system will be studied. It will have eight possible 
initial states: 1 . . . . .  8. At each moment we shall be able to test one of these 
states. As in the previous section, we shall have the following outcomes. 
P(i, k) here means the probability to have the Yes reply to the query k provided 
the initial state of  the object was i: 

f~, 
' i = k  

P( i ,k )  = 0, i -  k =  1 (mod4)  (2.l) 
otherwise 

This is the analog of formula (1.1). This model can be realized by an 
experiment with ions analogous to the Stern-Gerlach one, but the filters x 
and z will split the incoming beam into four. The quantum theorem I am 
going to prove is formulated as follows. 

Suppose we have a source of ions which emits them by one by one, 
and all of them are prepared in the same initial state, but we do not know 
this state. The question is formulated as follows: 

Which is the Initial State? 

Denote by q the query, Is the state q? Looking at formula (2.1), we can 
see that after at most six steps (emitted ions) the question reduces to the 
following: Is the state i or k? where i is even and k is odd. The algorithm 
of this reduction is shown in Fig. 4. 

Now suppose we stopped at alternative 12. If we then perform the test, 
say 1, the positive reply which is possible in virtue of (2.1) will not clarify 
the situation in virtue of formula (2.1). To know the state, we must perform 
a test, say 3. If  the reply is Yes, nothing is clear. Meanwhile, if No is obtained, 
it is the solution of the problem: that means that the state is definitely 2. 
Whereas we see that there is no upper bound for  the number o f  tests to get 
the definite answer irrespective of that the initial state was a pure one! 

The corollary is that in a quantum situation one can have a problem of 
choice from a finite number of alternatives having no upper bound for its 
resolution time. 

Note that the quasi-quantum query model can be realized by classical 
automata having nothing quantum in their nature. These are so-called normal- 
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16 I /  25 27 340 

36 38 45 47 O / ~  i /  ~ 

56 58 67 78 
Fig. 4. The reduction algorithm. Each node with a number inside is a test. Left edges are 
associated with Yes outcomes, right ones are No outcomes. The filled nodes correspond to the 
reduced questions. For instance, 38 means 3 o r  8. 

ized automata (Grib and Zapatrin, 1990). From the pure logical point of view 
normalized automata may be thought of as sort of "Skolemized quantum 
systems" grasping only the logical structure of testable properties. 

3. A PIECE OF QUANTUM MECHANICS 

The mathematical formalism of quantum mechanics is a steady and solid 
machinery verified by an enormous number of experiments and applications. 
I shall briefly introduce the piece of it needed in the sequel. In quantum 
mechanics, a physical object is associated with a Hilbert space ~ ,  called 
state space. I shall consider here only finite-dimensional case. A (pure) state 
of the object is associated with a unit vector q~ ~ ~ .  When ~ is realized as 
a functional space, + is just the wavefunction, or "matter wave." 

The observable entities are associated with self-adjoint operators in ~ .  
Let A be the operator associated with an observable ,~. Since A is self-adjoint, 
it can be decomposed in accordance with the spectral theorem: 

A = ~ a lP i 

where Pi are mutually orthogonal projectors in ~ ,  and as ~ ~ are possible 
values of the observable s~. The heart of quantum measurement theory is the 
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Projection Postulate. Let t~ be the initial state of the object. Then the 
measurement of the observable a~ in the state t~ results in: 

�9 The value ai of a~ is obtained with probability equal to HPitHI 2, In 
particular, when ~ is an eigenstate of A, the appropriate value ai is 
obtained with certainty 

�9 The state of the object changes after the measurement to the eigenstate 
associated with the observed value of sg. In particular, when the 
initial state ~ is the eigenstate of A, the measurement does not change 
the state of the object. 

The new fundamental notion brought by quantum mechanics is that of 
complementary measurements. In the formalism they are associated with 
noncommuting operators. Due to Bohr's principle, such measurements are 
not performable simultaneously in principle. 

The last (but not the least) thing that will be needed is the description 
of what happens with a quantum mechanical system while one does not touch 
it, that is, how it evolves in time. This is described by 

+(t) = U(t)+(O) = exp(- iHt)+(0)  

where U(t) is a semigroup of unitary operators representable in the form 
exp(-iHt)  with a self-adjoint operator H called the Hamiltonian of the evolu- 
tion. In particular, when t~(0) is an eigenvector of H, the initial state is 
unchanged up to a factor ~(t) such that Ic~(t) l 2 = 1 and the test verifying 
the state ~(0) will always give the Yes answer. 

That is all from quantum mechanics that will be needed for further 
purposes. 

4. CLASSICAL G E D A N K E N C O M P U T E R  

In this section I describe the classical computational process as a quan- 
tum one. 

Loading Input Data. It is supposed that there is a source of physical 
entities, call them launches, having state space rich enough to encode 2" 
input values. As a matter of fact, the state space must be broader to include 
the START and HALT states to enable the reversibility of the process. The 
launch enters the input register (measuring device having n yes-no,  or 0-1  
controls) which prepares it in one of its orthogonal pure states. 

Computation is the evolution of the launch within the processor con- 
trolled to the extent that before the computation starts the parameters of the 
Hamiltonian responsible for the evolution of the launches are set up (in other 
words, the program is loaded before the computation), whereas during the 
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computation no intermediate measurements are performed. Some ideas toward 
the realization of this process were proposed by Deutsch (1989). 

Output is the source of particles (they may not be the initial launches) 
having only two pure states and produced by the computer in such a way 
that their states are associated with the calculated values. 

So, the classical computational process looks as follows. 

Installation of Program. Let F(x~ . . . . .  x,,) be the function whose values 
are to be calculated. That means that the evolution law for the processor is 
fixed in such a way that each pure state prepared by the input register affects 
the emission of the output launch in one of the final states. 

Calculation. The values (xl . . . . .  xn) of input variables are imposed by 
the appropriate setup of the input controls. Then the launch is emitted. It 
passes through the input register, which prepares it in the pure state t~(0), 
and enters the input gate of the processor. By the end of calculation a polarized 
electron is emitted by the processor. It rushes into the output filter, which 
checks whether the state is HALT (and it certainly will be so since we have 
organized the evolution within the processor in such a way). 

It is essential to note that the Hamiltonian of the processor is such that 
if the calculation with the same input data is repeated, one is compelled to 
get the same result. So, on classical input data the described Gedankencom- 
puter works as a deterministic machine. 

5. UNCERTAINTY AT OUR SERVICE 

In this section I show how the Gedankencomputer described in the 
previous section may be converted into a quantum theorem prover. 

In order to convert the computer into a quantum theorem prover (QTP), 
both classical input and output registers are removed while the processor is 
kept unchanged. The input register is replaced by an apparatus measuring 
complementary values. The crucial point is the following: the prepared state 
must be the superposition of all input states with all nonzero coefficients. 
What is needed is to suppose that the process of computation of each particular 
value P(xl . . . . .  x,,) is a quantum process. 

The launch rushes into the processor; the latter will start working gov- 
erned by its dynamical laws (=  computes P according to the program). Finally, 
since the quantum evolution is linear, the result will be the superposition of 
all classical results with the same coefficients. Then, instead of measuring 
the output value, one makes the output register be an observable complemen- 
tary to the classical output. 

Which should be this complementary observable? The idea is the follow- 
ing: we make the input state oscillate (in time or in space, at convenience), 
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and measure the value of  the derivative of  the output. Then, since the processor 
still computes P, we have two alternatives: 

1. If there is no x] . . . . .  x,, such that P(xj . . . . .  x,,) is true, then the 
value of the derivative will be zero 

2. If there are xl . . . . .  xn such that P(x~ . . . . .  x,) is true, then the value 
of the derivative will be nonzero 

The objection against this idea is that the value of the derivative in the 
case when we have, say, only the satisfying set for P may be of the order 
1/2 n. To avoid this trouble, return to the description of the classical Gedanken- 
computer. When it is converted to QTP, we have some spare "degrees of 
freedom" to define the "program" for the processor. Namely, we are confined 
by only classical outputs for classical inputs, and, since the state space of 
the launch is broader, we are free to define the evolution for nonclassical 
input states. This is the main issue making QTP different from other quantum 
computers [for review on quantum computers see Bennett (1993)]. 

So, in principle, the satisfiability problem can be solved by QTP at one 
P-calculation state. There is also a problem of preparation of the superposition 
of all input states; however, it was shown (Deutsch and Jozsa, 1992) that it 
can be done for polynomial time. 

6. CO NCLUDING REMARKS 

I have endeavored to show how quantum effects such as superposition 
of states and wave properties of the particles can be used for calculation 
purposes. The proposed quantum theorem prover is merely an imaginary 
machine. However, suppose it may exist; it can drastically influence many 
principles of programming. For example, such problem as SAT, satisfiability 
of propositional forms, is solved on classical computers for the time T -- 
exp(n), where n is the number of variables. QTP solves it for polynomial 
time (required for the preparation of the input). Accepting QTPs requires 
new options in programming languages: the assignment of value should be 
replaced by the preparation of the input register. 
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